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The converging shock wave is assumed to be generated by an instantaneous energy release 
on a rigid cylindrical wall. The fluid flow caused by its propagation is numerically simulated. 
The behavior of the solution in the focusing stage is closely investigated and compared with 
the selfsimilar solution. Results include new details of the transition of the solution from the 
nonselfsimilar region to the selfsimilar region. Numerical methods such as the random choice 
method, the method of characteristics, and the second-order accurate finite difference method 
with artificial viscosities are adopted. The results are also compared with those of the method 
of integral relations. They all agreed well with one another except for the focusing stage. The 
random choice method and the method of characteristics produce nearly identical results in 
the focusing stage, suggesting the mutual credibility of the two methods. Artificial viscosities 
involved in the linite dilference scheme smear out the shock front as it approaches the axis. 
The comparison with the selfsimilar solution is then difficult. fc 1988 Academic Press, Inc. 

I. INTRODUCTION 

In this paper, the fluid flow caused by the propagation of a cylindrically converg- 
ing shock wave is numerically simulated. The shock wave is assumed to be 
generated by an instantaneous energy release on a rigid cylindrical wall. The flow of 
this kind was first analyzed by Bach and Lee [l], and later by Matsuo [24]. The 
application of the Bach and Lee solution was limited to the initial propagation of 
the shock wave in close proximity to the wall. Using the method of integral 
relations, Matsuo obtained a “global solution,” that is, a solution which describes 
the whole history of the fluid motion from the initial stage near the wall to the con- 
vergence stage near the axis. It was shown that as the wave propagates towards the 
axis, the solutions tend to approach but never reach the selfsimilar implosion limit 

* Present address: Research Institute for Applied Mechanics, Kyushu University, Kasuga-Shi, Japan. 

384 
0021-9991/88 $3.00 
Copyright 0 1988 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



CYLINDRICALLY CONVERGING SHOCK WAVES 385 

[5]. The rate of approach appeared to be slower than expected. The application of 
the selfsimilar solution also appeared to be restricted to a very small region behind 
the front. As pointed out in Ref. [3], however, the convergence of the method of 
integral relations tends to deteriorate as the shock front approaches the region in 
close proximity to the axis. It has then been suggested that other numerical 
methods should be considered to investigate more closely the transition from the 
nonselfsimilar region to the selfsimilar region. Apart form the purely mathematical 
interest, the need for such an investigation has been increased in the engineering 
practice. Converging shock waves have been utilized there to produce an extreme 
condition of ultra-high temperature, density and pressure [6-83, Indeed questions 
arise there: Does the flow actually fall within the selfsimilar regime before the shock 
front enters the region near the point of convergence where the fluid dynamics of 
nondissipative and electrically neutral continua may break down? If it does, what is 
the selfsimilar region and to what extent behind the shock front does it hold? The 
primary aim of the present study is to answer these questions. Several existing 
numerical methods are then compared to deduce the conclusion. However, more 
modern numerical methods incorporating finite differences such as those reviewed 
later [9912] are not tested since the answer has been obtained without. referring to 
them. 

Numerical simulations of cylindrically converging shock waves have been made 
by several investigators. Most of them, however, have been restricted to the cylin- 
drical shock tube problems with moderate initial pressure ratios. Sod [i 33 
computed this problem by combining the Glimm’s method [14] (the random 
choice method) and operator splitting. The sharp discontinuity was maimained 
throughout the calculation although it was a natural consequence considering the 
character of the method. Comparisons with the finite difference methods indicated 
that there was a difference in the time at which the shock reached the axis. Saito 
and Glass [lS] applied this method to the implosion problem rather than t 
shock tube problem. In fact they treated the explosive-driven hemispherical con- 
verging shock wave. It was reported that reasonable results were obtained. The 
finite difference method was first applied to the cylindrical shock tube problem by 
Payne [l-6]. The Lax scheme was used and a plausib!e result was obtained, 
Lapidus [17] proposed the “Cartesian method” to compute flows with radia? 
symmetry. The results were compared with Payne’s solutions. Some differences 
including those in shock speeds were pointed out. Abarbanel and Goldberg [18] 
computed the same problem using an iterative procedure based on the Lax- 
Wendroff method. The result differed markedly from Payne’s solutions. 
recently Ben-Artzi and Falcovitz Cl?.] proposed an upwind second-order sc 
based on the GRP (generalized Riemann problem) method. This method is unique 
in solving nonplanar flows without resorting to operator splitting. Cylindrical shock 
tube problems were tested and it was reported that the results. including the arrival 
time of the shock at the axis as well as the shape and extremal values of the flow 
profiles, were in very good agreement with those of Abarbanel and Goldberg [18: 
and Sod [13]. 
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The problem which is to be treated here involves two distinct points. They are: 
(i) The initial pressure ratio is much larger than that in the preceding studies. 
Actually it ranges from tens to thousands, and (ii) the initial condition is not 
uniform along the space variable. The flow variables change abruptly behind the 
discontinuity. It seems that such situations were severe for the numerical 
simulation. Several preliminary calculations were then made for the plane and 
cylindrical shock tube problems to seek suitable numerical methods. Finally three 
methods were adopted; that is, the random choice method combined with operator 
splitting, the method of characteristics, and the second-order accurate finite 
difference methods with artificial viscosities. 

The random choice method produced very favorable results. They agreed very 
well with the results of the method of integral relations [3,4] except for the region 
in close proximity to the axis. It would be worth noting that two results obtained 
by different numerical methods agree with each other. This would imply the 
correctness of the two solutions. Near the axis, the solutions of the random choice 
method approach the selfsimilar solutions more quickly than those of the method of 
integral relations. However, the rate of approach is still slower than expected. In 
fact the selfsimilar solution begins to hold when the shock radius is less than 2% of 
the initiation radius. Even then, it only holds in a narrow region behind the front. 

The result of the method of characteristics agreed well with the two previous 
solutions except for the focusing stage. In the region near the axis, it is nearly iden- 
tical with that obtained by the random choice method. Considering the fact that the 
random choice method and the method of characteristics are based on distinctly 
different formulations, it seems to suggest the mutual credibility of the two 
methods. It also suggests that the conclusion deduced from the random choice 
method is correct. 

It seemed that the situation associated with the initial conditions was particularly 
severe for the finite difference method. Several schemes were then tested with dif- 
ferent artificial viscosities. Most of the calculations could not be rid of strong 
oscillation behind the discontinuity. They eventually led to instability. The most 
favorable result was obtained by the second-order schemes, particularly by the 
MacCormack scheme [ 191 with artificial diffusion terms. The result of calculations 
agreed well with the other three results, except for the region near the axis. In the 
focusing stage, it begins to differ from the others. The shock speed is slower and the 
discontinuity is smeared out due to viscosity. Small oscillations still remain behind 
the shock front. The comparison with the selfsimilar solutions is then difficult. 
However, it should be mentioned that difficulties encountered here do not imply the 
deficiency of finite difference methods. Rather, more modern methods incorporating 
finite differences would produce solutions with higher accuracy. In fact many 
advances have been made in the past few years in dealing with weak solutions to 
Euler’s equations within the context of finite differences. Roe [9], for example, 
reviewed the recent progress in this area. Of all these works one may, for example, 
refer to works by Harten [lo], Roe and Pike [ll], and Ben-Artzi and Falcovitz 
c121. 



CYLINDRICALLYCONVERGING SHOCK WAVES 387 

One more thing to be remarked is the problem of the reflexion of shock waves 
from the axis. However, seeking the most reliable method for analyzing incoming 
waves is prerequisite to the study of the reflexion. Hence the present study will serve 
for the investigation in future. 

II. BASIC EQUATIONS AND INITIAL DATA 

The conservation laws for the inviscid and nonconducting flow with cylindrical 
symmetry are written as 

su dF(U) 
dt+ -+ W(U)=O, I3 

with 

P 

u= pu ) (i e 

i 

PG 

F(U)= pu’tp 

4e +p) 

whereas t and r are the independent variables which represent the time and the 
space coordinate respectively; p, U, p, and e are, respectively, density, particle 
velocity, pressure and total energy per unit volume. Assuming polytropic gas, e is 
represented by 

e = p/( y - 1) + pu’j2, 

where y is the ratio of specific heats. 

(, 5 i 

We shall now assume that the cylindrically converging shock wave is generated 
by an instantaneous release of the energy E per unit length of the cylinder at the 
rigid cylindrical surface r = R,. Nondimensional variables are defined as 
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where po, po, and co are the pressure, the density, and the sound speed in undistur- 
bed fluid, respectively. Equation (1) remains unchanged by the substitution of 
Eq. (6). Nondimensional quantities 5 and E, are defined for the later use as 

5 = (Ro - R,)!Ro, (7) 

E, = E/( 2cpnp, R;), (8) 

where R, is the coordinate of the shock front. 
The boundary condition at the cylindrical surface is written as 

u=o for r=Ro. (9) 

The perturbation solutions at e = 0.1 are used as the initial data of the random 
choice method and the tinite difference method. They were originally obtained by 
Bach and Lee [l] and later recalculated by Matsuo [2]. In the calculation 
adopting the method of characteristics, the solutions at 5 =0.3 obtained by the 
method of integral relations [3,4] are used as the initial data (see III. B). It was 
shown that the sound speed is infinite (density is zero) at the cylindrical wall r = R, 
[3,4]. Some trick in the numerical’ procedure would be necessitated to cope with 
this difficulty. Zero density at the wali might be interpreted as follows: At the 
instant of energy deposition (t = O), a shock wave of infinite strength is produced at 
the wall. This is the consequence of the analysis which neglects dissipative effects. 
The gas initially compressed by this infinitely strong shock wave is then isen- 
tropically expanded to a finite pressure. This would cause zero density at the wall. 
As pointed out in Section I, two other difficulties arise associated with the initial 
condition. This is peculiar to the problem in question and would give rise to a dif- 
ficulty which is not encountered in the shock tube problem. It should also be men- 
tioned here that Eqs. ( 1) to (5 j do not include real gas effects which will influence 
the flow near the axis. 

III. NUMERICAL SIMULATIONS 

A. Random Choice Method 

Let Ar and At be increments of the variables r and t, respectively, where 
Ar = Ro/N; N being the number of meshes. Approximation of dU/dt in Eq. (1) by 
the first-order difference quotient together with operator splitting leads to 

(10) 

and 

iy-ui*- 
At - -W(Ui*), (11) 
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where the subscript r denotes the partial differentiation with respect to r and 

V; = U(jAr, ndt). (12) 

Equation (10) suggests that the provisional value 1!77 is a solution of the piane 
flow problem. It is solved here by the random choice method. U;! + l is then obtained 
from Eq. (11) by a simple calculation. Preliminary calculations were made for the 
plane and cylindrical shock tube problems which had the initial pressure ratios of 
tens to thousands. Two methods of generating random numbers, i.e., the mixed 
congruential method proposed by Chorin [ZO] and the van der Corput method 
first adopted by Colella [21]? were tested. The two results were nearly identical 
although the latter produced smoother and slightly better solutions. It was then 
decided to adopt the van der Corput sequence. The number of meshes N was first 
taken as 100. The scattering of the numerical points caused by the randomness of 
the sequence was noticeable. It was then taken as 1000 in the subsequent 
calculations. The increment of time Ar was determined by the 
CouranttFriedrichs-Lewy condition [22], which is written as 

Ar<Ar/(lu\ +c). i13j 

The condition of symmetry was used for the boundary condition at the wall 7 = K,, 
that is. 

PY- I;2 =p.v+ 1:27 PN- I;2 = p.v+ 1;2* Z4.G 1;: = -14>L + I.‘21 E14) 

where the suffix N indicates the mesh point on the wall. Zero density at the wail 
r = R, was replaced by a finite small value to get rid of the computational difficulty. 
If the numerical scheme is stable, then the error would eventually disappear. Tn fact 
several different values of density were tested but no appreciable changes appeared. 
At various time steps the global conservation of mass and energy has been checked 
by integrating the variables throughout the flow region. It has been proved that 
errors are not significant. The result of the final calculations is shown in Figs. E IO 3 
for E, = 10, 100, and 1000. The ratio of specific heats y is assumed to be 1.4 as weii 
as in the subsequent calculations. Nondimensional pressure p, density p, and par- 
ticle velocity U are taken on the ordinate and F= r/R, on the abscissa. These figures 
show the comparison of the spatial distribution of variables at various times as the 
solution develops. The times are taken such that the shock front is at 5 = 0.3, 0.6, 
and 0.9. The loci of the propagation of the shock front are shown in Fig. 4. The 
results obtained by the method of integral relations [3] are also shown in these 
figures. It is to be noted that the two results obtained by distinctly differem 
numerical methods are nearly identical. This would imply the correctness of each 
solution. Figure 5 shows the relation among the pressure, particle velocity, and den- 
sity at the shock front. The solid lines represent the Rankine-Hugoniot relations. It 
can be seen that the result of the random choice method satisfies the 
Rankine-Hugoniot relations with high accuracy. Figures 1 to 3 suggest that, as the 
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FIG. 5. Relation among pressure. density, and particle velocity at shock front, E,= 1000: 
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shock front approaches the axis, the two results begin to differ slightly from each 
other. To investigate this more closely, the behavior of the solutions is compared in 
the region near the axis in Figs. 6 to 8. Nondimensional variables p/lM’, p, and C/n/r 
are taken on the ordinates, where M is the propagation Mach number of the shock 
front referred to the sound speed cO. A nondimensional space coordinate r/R, is 
taken on the abscissa in place of rfR,. In the random choice method, M is 
calculated using the Rankine-Hugoniot relation. It can be seen that the solutions 
obtained by the random choice method approach the selfsimilar solutions [S] more 
quickly than those obtained by the method of integral relations. In the previous 
study [3], it was suggested that the convergence of the method of integral relations 
tended to deteriorate as the shock front approached the region in close proximity to 
the axis. It might then be concluded that the random choice method would produce 
more exact solutions. This will be reaffirmed later by the result of the method of 
characteristics. Figures 6 to 8 also suggest that the rate of approach to the 
selfsimilar solution is faster for a larger value of E,,. The tendency is particularly 
noticeable in the density distribution. Figure 9 shows the plot of the pressure at the 
shock front against E, for fixed values of t. It can be seen that for various < (accor- 
dingly for various times) it is proportional to E. except for the cases of small E, 
(E,<20). It also implies that the temperature and the particle velocity in strong 
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FIG. 6. Spatial distribution of pressure. density, and particle velocity in the focusing stage, E, = 10: 
-, selfsimilar solution: ---, random choice method: ---, method of integral relations. 
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FIG. 9. Dependence of the pressure at the shock front upon the initiation energy E,. 

shocks near the axis are proportional to E, and E:*, respectively. The main 
features of the behavior of the solution near the axis are then enumerated as 
follows: (i) The solution tends to approach the selfsimilar implosion limit. However, 
the rate of approach is slower than expected. (ii) The selfsimilar solution begins to 
hold when the shock radius is less than 2% of the initiation radius (t > 0.98). Even 
then, it only holds in a region immediately behind the front, say in the region 
r/Rx < 1.5. (iii) The distribution of the particle velocity is closely approximated by 
the selfsimilar solution over a wide region behind the front. It is needless to say that 
this does not imply the validity of the selfsimilar solution. (iv) The rate of approach 
to the selfsimilar solution is faster for a larger value of E,. The tendency is 
particularly noticeable in the density distribution. (v) The pressure and the 
temperature at the shock front are proportional to E, and the particle velocity to 
Ez2 except for the cases of small E, (E, < 20). 

B. Method of Characteristics 

The objective of this section is to reaffirm the conclusion obtained in the 
preceding section. We shall put emphasis upon the behavior of the solution 
immediately behind the shock front. The method of characteristics is adopted to 
solve the same problem. 

Characteristic forms of the conservation laws are approximated by finite 
difference equations as [23]: 

A + u+2A+ C/(I)- 1) = CA +s/[y(~~- 1) c,] -cud+ t/r, on C,, (15) 

A-u-24- c/(y-ll)= -cd-s/[y(y-l)c,]+cuA-t/r, on C-, (16) 

A,s=O, on Co, (17) 

where s is entropy and c, is the specific heat at constant volume; A + , A ~, and A, 
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respectively represent the increments of variables along the characteristic cmves 
c + ) C _ , and C, which are defined by 

A+r=(z4+c)A+t, on c+< (13) 

A-r=(z4--c)Lt. on C. (13) 

A,r=uA,t, on C,. (3Oj 

The system of equations, Eqs. (15) to (20), is sufficient for the calculation of 
interior points (the region behind the shock front). The Hartree’s method 124; 
combined with the predictor-corrector method was used to solve it. In the region 
near the shock front, only one family of characteristics, cithcr C, or C_ * ovcrtakcs 
the shock boundary from behind. Then only two equations, either Eqs. (15) and 
(18) or Eqs. (16) and (19): are usable. Three more equations are necessary to solve 
the problem. They are given by the Rankine-Hugoniot relations which hold on the 
shock boundary and are written as 

where 

First assuming M, we can find the shock position P at the next time step. Then U, c, 
and s at P are calculated by Eqs. (21) to (24). The characteristic C , or C can be 
drawn through P. This determines the point of intersection Q on the initial line. 
Using Eq. ( 15) or Eq. (16), the value of s at P is recalculated; in this case the co&- 
ficients take the average between the values at P and Q. Compare the two values of 
s. Repeat this procedure until the desired accuracy is attained. As mentioned 
previously, the sound velocity is infinite at the wall. A finite large value is then 
assumed to get rid of this difficulty. As shown in the previous study [4], a sing&r 
characteristic C, starts from the wall at an instant r = t, (corresponding, t 3s to) 
and overtakes the shock front at the instant of collapse (see Fig. 14 of Ref. [4]). If 
an initial line is chosen on which < is larger than <,,, then the section intercepted by 
C., and the wall does not include the domain of dependence of the region between 
the shock front and C,. Therefore, a small error in the initial data in the 
neighborhood of the wall has no influence upon the solution immediately behind 
the shock front. En fact, the calculation was started from a line 5 = 0.3 > to with the 
initial data prescribed by the method of integral relations [3, 41. The number of 
meshes N was taken as 1000. The increment of time dl was determined by ihe 
Courant-Friedrichs-Lewy condition Eq. (13). It has been shown that the results 
agree well with those of the random choice method and the method of integral 
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relations in the various stages of the shock propagation except for the focusing 
stage. In particular, the propagation speeds and the variables at the shock front are 
everywhere identical. In the vicinity of the axis, the spatial distributions obtained by 
the method of integral relations begin to differ from two other solutions. Figure 10 
shows the comparison among the three solutions near the axis. It is the same as 
Fig. 8 for the 0.98 case with the characteristic results added. The results of the 
random choice method and the method of characteristics are nearly identical and 
tend to approach the selfsimilar solutions more quickly. Considering the fact that 
the two methods are based on distinctly different formulations and that the 
convergence of the method of integral relations deteriorates in the focusing stage, it 
might be concluded that the random choice method and the method of 
characteristics produce correct solutions. It also suggests that the conclusion which 
has been deduced from the random choice method is correct. 

C. Finite Difference Methods 

It seemed that the situation associated with the initial conditions was particularly 
severe for the linite difference method. Several schemes were then tested with dif- 
ferent artificial viscosities. Most of the calculations could not be rid of strong 
oscillation behind the discontinuity. They eventually led to instability. The most 

O$J 2.0 3-o 4.0 5.0 6,O 
fir 

r/R5 

O.Y.0 r/k 
-O/M r 

o.oL * r c r 1 1 
1.0 2.0 3.0 4.0 5-o 

rms 6-O 

FIG. 10. Comparison of various methods, &= 1000: spatial distribution of pressure, density, and 
particle velocity in the focusing stage r = 0.98; -, selfsimilar solution; ---, random choice method; ---, 
method of characteristics; ---, method of integral relations. 
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favorable result was obtained by the second-order schemes, particularly by the 
MacCormack scheme [ 191 with artificial diffusion terms $‘U/ijdr”. The result of the 
calculation was, however, sensitive to the choice of the viscosity coefficient. The 
smallest value of the viscosity coefficient was chosen that suppressed the oscillation 
as small as possible. If the viscosity was too large, it noticeably smeared out the 
shock front. The viscosity coefficient determined in this way varied with the initial 
pressure ratio. The result of calculation agreed well with the other three results 
except for the region near the axis. In the focusing stage, it begins to differ from the 
others, The shock speed is slower and the discontinuity is smeared out due to 
viscosity. Small oscillations still remain behind the shock front. The comparison 
with the selfsimilar solutions is then difficult. Figure 11 shows an example of the 
results where it is compared with the result of the method of integral relations. The 
viscosity of Tyler’s form [25] and the tensor viscosity proposed by Schultz [26] 
were also tested but stable solutions were not obtained. In the strict sense, a term 
pS’U/i?r” does not represent the physical viscosity for cylindrical and spherical 
cases. It is then interesting to note that such an artificial viscosity only enables us to 
perform calculation. However, it should be finally mentioned that difficulties 
encountered here do not imply the deficiency of finite difference methods. Rather 

FIG. II. Spatial distribution of pressure, density, and particle velocity, EO= 1000: MacCormsck 

method compared with method of integral relations; -, MacCormack method; 0, method of integral 
relations. 
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more modern methods [g-12] as reviewed in Section I would produce solutions 
with higher accuracy. 

In foregoing discussions, it has been pointed out that both the random choice 
method and the method of characteristics produce favorable results although the 
two methods are based on distinctly different formulations. However, unlike finite 
difference methods which rely on artificial viscosity for treating shocks, both the 
random choice method and the method of characteristics satisfy exact 
Rankine-Hugoniot relations (the random choice method possibly violates them in 
the process of operator splitting but numerical results have demonstrated that it 
actually satisties the relations very exactly; see Fig. 5). Therefore their mutual suc- 
cess seems to indicate that the accuracy of computing converging shock waves 
depends predominantly on the accuracy in computing the shock itself, and to a 
lesser extent on the accuracy in computing the isentropic compression that follows 
the shock. Hence the agreement that has been demonstrated between the two 
methods is not expected to be universal. Rather, in flows with largely isentropic 
compression or rarefaction, one would generally expect the method of charac- 
teristics to be the superior one, since conservation of entropy along particle paths is 
directly incorporated into this method. (All that does not detract from the 
desirability of the random choice method, since it is far less complex in treating 
flow discontinuities than the method of characteristics.) 

IV. CONCLUSION 

The fluid flow caused by the propagation of a cylindrically converging shock 
wave is numerically simulated. The behavior of the solution in the focusing stage is 
investigated in detail and compared with the selfsimilar solution. The shock wave is 
assumed to be generated by an instantaneous energy release on a rigid cylindrical 
wall. Numerical methods such as the random choice method, the method of charac- 
teristics, and the second-order accurate finite difference method with artificial 
viscosities are adopted. The results are also compared with those of the method of 
integral relations. They all agreed well with one another except for the focusing 
stage. The random choice method and the method of characteristics produce nearly 
identical results in the focusing stage. The rate of approach to the selfsimilar 
solution is faster in these two methods than in the method of integral relations. It 
might then be concluded that the random choice method and the method of charac- 
teristics produce correct solutions. The finite difference method also produces iden- 
tical results except for the focusing stage. In the focusing stage, the shock speed is 
slower and the discontinuity is smeared out due to viscosity. Small oscillations still 
remain behind the shock front. The comparison with the selfsimilar solution is then 
difficult. However, it might be expected that more modern numerical methods 
incorporating finite differences would improve the result. The main features of the 
behavior of the solution near the axis are enumerated as follows: (i) The solution 
tends to approach the selfsimilar implosion limit. However, the rate of approach is 
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slower than expected. (ii) The selfsimilar solution begins to hold when the shock 
radius is less than 2% of the initiation radius (5 > 0.98). Even then, it only holds in 
a region immediately behind the front, say in the region r/R, < 1.5. (iii) The dis- 
tribution of the particle velocity is closely approximated by the selfsimilar solution 
over a wide region behind the front. However, this does not imply the validity of 
the selfsimilar solution. (iv) The rate of approach to the selfsimilar solution is faster 
for a larger value of the initiation energy E, The tendency is particuiarly 
noticeable in the density distribution. (v) The pressure and the temperature at t 
shock front are proportional to E, and the particle velocity to Slbz except for the 
cases of small E,(E, < 20). 
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